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1. Introduction

In 1993, we designed a new metaheuristic for combinatorial optimization problems:
the noising method [5]. Then, by combining different variants or by designing dif-
ferent “noising-schemes” (see below), we generalized it into a family of methods:
the noising methods (NM in the following) which share the same basic features (see
[10] for a review of the principles and of the applications of NM).

As the other metaheuristics (see for instance [1], [16], [19], [24], [25], [29], [32], [35],
[36], [37], [38], [42], [43] or [46] for general presentations upon metaheuristics, for
applications and for references), NM are not designed to solve only one problem,
but are designed to be applicable more generally to combinatorial optimization
problems. Such a problem can be described as follows:

Minimizef(s) for s ∈ S,

where S is a finite set of solutions and where f(s) gives the value of s according to
the objective function f .

As metaheuristics like descents, simulated annealing, tabu search and some oth-
ers, NM are based on local or elementary transformations. Such a transformation
changes one feature of the current solution without changing its global structure.
When applied to a solution s, an elementary transformation changes s into a neigh-

bour of s. Thus, for a given elementary transformation, we may define the neigh-

bourhood N(s) for each solution s as the set of the neighbours of s that are obtained
when the elementary transformation is applied to s.

Thanks to these transformations, we may design a descent method. A descent
starts with an initial solution s0 (which can be for instance randomly computed,
or found by a heuristic) and then generates a series of solution s1, s2, ..., si, ..., sq

such that:

(1) for any i ≥ 1, si is a neighbour of si−1: si ∈ N(si−1);
(2) for any i ≥ 1, si is better than si−1 with respect to f : f(si) < f(si−1);
(3) no neighbour of sq is better than sq: ∀s ∈ N(sq), f(s) ≥ f(sq).

Then sq is the solution returned by the descent. By (3), sq is at least a local mini-
mum of f with respect to the elementary transformation. A classic variant of the
descent consists in applying descents successively from random initial solutions and
in returning the best computed solution: it is the repeated descents (RD) method.

In the following, ∆f(s, s′) = f(s)−f(s′) will denote the variation of the objective
function when we try to move from the current solution s to one of its neighbours
s′.

There exist several ways to explore the neighbourhood of the current solution
(see [10] for instance). In this paper, we adopt a systematic or cyclic exploration
(see [15]): the neighbours of any solution are ranked in an implicit order and they
are all considered in this order once, before being considered for a second time.
A neighbour better than the current solution is accepted as soon as it has been
discovered, even if there exists another neighbour, not yet considered, which is still
better. Other possibilities include a random exploration (as in a classic simulated
annealing), or an exhaustive one (as in a classic tabu search) in order to find the
best neighbour. It is sometimes possible to improve this systematic exploration by
mixing it with an exhaustive one; it is what we shall do for the first two problems
described below.

NM are also based on elementary transformations. The main difference with a
descent is that, instead of considering the genuine objective function f , we suc-



June 25, 2008 11:59 Optimization CharonHudrySelfTuning

3

cessively optimize perturbed (“noised”) functions obtained by adding noises to f .
These noises are randomly chosen into an interval of which the range decreases
during the process down to 0: so, as the process runs, the noised functions get
closer and closer to f and, at the end, these is no noise (or no significant noise) and
we deal with f itself. From time to time, we may insert a descent with respect to
the genuine function f to optimize, in order to stay closer to the values taken by
f . Of course, it is necessary to specify some components (what gives the scheme

of a NM): the probability distribution of the noises (and thus the probability dis-
tribution to accept a neighbour of the current solution s), their range, the way of
decreasing them, the way of exploring the neighbourhood of s, and so on. These
components give to the user many possibilities to get his/her own scheme to de-
sign a NM. When these components are properly chosen, we get back the scheme
of simulated annealing or of the threshold accepting algorithms designed by Dueck
et alii [17], [18] (see [9] for details).

From a theoretical point of view, the wider possibilities associated with NM in-
volve the possibility to get better heuristics, what happens usually from a practical
point of view too. Nevertheless, as for other metaheuristics, it is still necessary to
tune several parameters. Unfortunately, the values of these parameters depend on
the problem to solve, and even on the instances of the problem, and thus usually
it is quite difficult to find even good values for them (and sometimes, even not too
bad ones). The aim of this paper is to describe a first attempt to tune the nume-
rical parameters of NM automatically, by the applied NM itself, so that the user
has only one parameter to choose himself or herself: the CPU time that he or she
wants to spend in order to solve the considered instance of his or her problem (of
course, it is also necessary to define the structural components like the elementary
transformation). The other parameters are automatically computed during the run
of the algorithm (it is especially the case for the initial noising-rate, which plays
the same role as the initial temperature in simulated annealing) or fixed in order
to simplify the tuning (it is the case for the last noising-rate, which is fixed to 0;
see the discussion in the conclusion). Obviously, the more CPU time, the better
the expected value of the solution computed by the self-tuned NM.

We tested this self-tuned noising method (STNM) with two different types of
noises on four problems: the clique partitioning of a weighted graph, the linear or-
dering problem, the travelling salesman problem (TSP) in the general case (weights
are not necessarily distances), and the Euclidean TSP. Hence, STNM is tested eight
independent times with the same program and especially the same way of tuning
the numerical parameters.

The paper is organized in six sections. In Section 2, we briefly depict the problems
on which STNM has been tested. Then we describe in Section 3 the scheme of the
noising methods that we intend to tune automatically; this scheme is based on
a procedure that we call the Core procedure. Then we show in Section 4 how to
tune the parameters of NM automatically. Section 5 is devoted to the experimental
results. Conclusions can be found in Section 6.

2. The four studied problems

The four problems studied here arise from graph theory. In this paper, G = (V, E)
will denote a graph (undirected for three problems and directed for one). The
number of vertices of G will be denoted n, and the vertices will be v1, v2, ..., vn.

As the noising methods belong to the set of metaheuristics defined by neigh-
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bourhoods, it is necessary to define such neighbourhoods for the studied problems.
Usually, the neighbourhood is defined by an elementary (or local) transformation;
then the neighbourhood of a solution s is the set of solutions obtained by applying
the elementary transformation to s. We specify the elementary transformations for
each problem below. Notice that, from previous experiments (see [10] and references
below), NM give usually better results than classic metaheuristics like simulated
annealing for these problems.

2.1. The clique partitioning of a weighted graph problem

From a chronological point of view, the problem of partitioning a weighted graph
into cliques is the first application of the noising methods (see [5]). Since 1993,
the noising methods have been applied to this problem several times: see [11], [14],
[20], [21], [45]. It appears in different contexts (see [2], [3] or [23] for references and
related topics).

An instance of this problem is given by an undirected complete graph G =
(V, E, w) of which the edges e ∈ E are weighted by integers w(e) (which can be
positive, negative, or equal to 0). A solution s is any partition of V into a certain
number k of subsets V1, V2, ..., Vk; notice that the number of subsets is not given in
the instance: it depends on G (more precisely, on n and w). The objective function
f is given by the sum of the weights of the edges between the different subsets of
the considered partition: more precisely, let k be any integer with 1 ≤ k ≤ n and
let V1, V2, ..., Vk be any partition of V into k subsets; then we set:

f(V ) = 0 and, for k > 1, f(V1, V2, ..., Vk) =
∑

1≤i<j≤k

∑

(x,y)∈Vi×Vj

w({x, y}).

The aim is to determine the optimal value k∗ of k and an optimal partition
V ∗

1 , V ∗
2 , ..., V ∗

k∗ into k∗ subsets of V in order to minimize f :

f(V ∗
1 , ..., V ∗

k∗) = minimum off(V1, ..., Vk) for (V1, ..., Vk) ∈ {partitions of V }.

This problem is NP-hard (see [47]).
The adopted elementary transformation is the one proposed by S. Régnier in

[39]: it consists in removing a vertex x from the subset V (x) to which x belongs
currently (if V (x) contains only x, then V (x) becomes empty and disappears: the
number of subsets decreases by 1) and to add x to another existing subset or to a
new subset (which thus contains only x at this moment; in this case, the number of
subsets increases by 1). This transformation allows to reach any partition of V from
any other partition of V . Notice that the number of neighbours of a partition P of
V depends on P : if we do not take into account some special cases (as the one for
which some subsets can contain only one vertex), then the number of neighbours
of P is about n× (k + 1), where k denotes the number of subsets of P .

To explore these neighbourhoods, we mix the systematic strategy described above
with an exhaustive one. More precisely, if the implicit order involved in the sys-
tematic exploration of the vertices is v1, v2, ..., vn, we look for the best subset for
v1 (which can be its current subset, or the empty set, or something else), then the
best subset for v2, and so on until vn, then again for v1 and so on, until it is not
possible to improve the situation by such a move. Such a mixed strategy does not
change the features of the descent, but saves time by avoiding to sum up the same
weights several times or to move again a same vertex which has just been moved
into a subset which was not the best possible.
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2.2. The linear ordering problem

For this problem, an instance is given by a tournament (i.e., an asymmetric com-
plete digraph) T = (V, A, w) of which the arcs a ∈ A are weighted by non-negative
integers w(a). To any linear order O = (V, B) defined on V , we associate a value
f(O) given by the sum of the weights of the arcs with a different orientation in T
and in O:

f(O) =
∑

(v,v′)∈A−B

w(v, v′).

The problem consists in finding a linear order O∗ (sometimes called a median order

of T ; see [2]) which fits T as well as possible:

f(O∗) = minimum of f(O) for O ∈ Ω(V ),

where Ω(V ) denotes the set of the linear orders defined on V . This problem is also
NP-hard (for references on the complexity of the computation of median orders,
see [26]; see also [2], [13], [30] or [40] for references on the context). NM have
been applied formely to the linear ordering problem in [7] and in [12]. A special
interesting case is the one (called Slater problem, see [44]) for which all the weights
are equal to 1 (then f(O) gives the number of disagreements between O and T );
Slater problem is also NP-hard (see [13] for references).

In our experiments, the elementary transformation consists in shifting a vertex
from its current place in the considered linear order O to another place in O. More
precisely, if O is the linear order v1 > ... > vi−1 > vi > vi+1 > ... > vj−1 > vj >
... > vn , where the notation vk > vk+1 means that the arc between vk and vk+1 is
(vk, vk+1) (the other arcs are obtained by transitivity), then the neighbours of O
looks like v1 > ... > vi−1 > vi+1... > vj−1 > vi > vj > ... > vn for some appropriate
i and j. Here, the number of neighbours does not depend on O, and is always equal
to (n − 1)2. To explore the neighbourhood, we also mix two strategies, as for the
previous problem: we look for the best place of v1 in the current linear order, then
the same for v2, and so on until vn, to do it again from v1 until no move brings
improvement.

2.3. The travelling salesman problem

The travelling salesman problem (TSP) is well-known to be NP-hard (see [22],
[31] or [33] for references). Given a complete weighted graph, it consists in fin-
ding a Hamiltonian cycle with a minimum weight. In this TSP, the weights are
not necessarily distances. The adopted elementary transformation is the usual
2-opt proposed by Lin in [34] and which consists in removing two non-adjacent
edges in the current Hamiltonian cycle and in adding the two properly chosen
edges providing a new Hamiltonian cycle: if the current Hamiltonian cycle is
v1v2...vi−1vivi+1...vj−1vjvj+1...vn , then the application of the 2-opt transformation
gives a cyle of the form v1v2...vi−1vivjvj−1vj−2...vi+2vi+1vj+1vj+2...vn for properly
chosen i and j (in particular, i /∈ {j−1, j, j+1}). Here also the size of the neighbour-

hood does not depend on the current solution and is equal to n.(n−3)
2 . Applications

of NM to this problem can be found in [6], [8], [27] and [28].
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2.4. The Euclidean travelling salesman problem

Here we deal with the same problem as in Section 2.3, but the vertices are points in
the Euclidean plan and the weight of an edge {x, y} is given by the Euclidean dis-
tance between x and y. We consider this case separately because we can draw bene-
fit from its specificities. In particular, we follow an idea developped by E. Bonomi
and J.-L. Lutton in [4]: the points are contained in a square divided into several
equal sub-squares so that the average number of points in each sub-square is about
3; then the application of the 2-opt transformation is limited to vertices vi and vj

belonging to the same sub-square or to adjacent (i.e., sharing at least a corner)
sub-squares. This allows to reduce the number of possible 2-opt (and so to speed
up the computations) without damaging the performance of the method (see [4] for
details). Thus the size of the neighbourhood depends on the current Hamiltonian
cycle and above all on the distribution of the points into the square.

3. The studied noising methods

As said above, NM are based on elementary transformations as descents, but ap-
plied to “noised” functions. There are several ways to define these noised functions
(see [9] or [10] for more details). In our experiments, we consider two ways:

• noising the variations of f ;

• noising the data from which the values of f are computed.

3.1. Noising the variations

The most general way (see [10]) of defining the noised functions fnoised consists in
perturbing the variations of f . When a neighbour s′ of s is tried, we do not consider
the genuine variation ∆f(s, s′) of f , but a noised variation ∆fnoised(s, s

′) defined
by:

∆fnoised(s, s
′) = ∆f(s, s′) + ρ

where ρ denotes the noise (it depends on s and s′, but also on the iteration: if
we consider twice the same pair (s, s′), ρ is not necessarily the same). The noise ρ
follows a specified probability law of which the mean and the standard deviation
tend to 0, by decreasing for the standard deviation.

Among the different possible probability distributions, we adopt here a “loga-
rithmic” distribution:

∆fnoised(s, s
′) = ∆f(s, s′) + r ln(u),

where u is a number uniformly drawn into ]0, 1[ and where r is a decreasing
parameter called the noising rate. This choice comes from the acceptance criterion
used in simulated annealing (SA). Indeed, in SA, a neighbour s′ is accepted instead

of s with a probability equal to min{1, exp(−∆f(s,s′)
T )}, where T is the temperature.

Then, in order to know whether s′ is accepted instead of s when f(s′) is greater than

f(s), we draw a number u uniformly into ]0, 1[ and we compare exp(−∆f(s,s′)
T ) and

u: if u is less than exp(−∆f(s,s′)
T ), s′ is accepted, otherwise s′ is rejected. It is easy

to see that it is the same as applying the acceptance criterion ∆fnoised(s, s
′) < 0

with the above definition of ∆fnoised(s, s
′), if r is chosen to be equal to T (it is why

we may consider that NM generalize SA; see [9]). The noising rate r can decrease
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geometrically or arithmetically from a maximum value rmax which depends on the
instance to solve and hence which must be tuned.

3.2. Noising the data

Another possibility to noise f (and, chronologically, the first one) consists in per-
turbing f by adding the noises to the data. For instance, if f is a linear function
of p variables xi (with 1 ≤ i ≤ p):

f(s) =

p∑

i=1

aixi,

with s = (xi)1≤i≤p, we may perturb the data ai by adding some random noises ρi

to them in order to design a “noised” function fnoised:

fnoised(s) =

p∑

i=1

(ai + ρi)xi.

In this kind of NM, when the noised function fnoised has been defined, we may
apply a descent with respect to fnoised, which provides some solution s. Then we
compute new noises to add to the data, and we restart a descent with respect to
the new noised function, from s. And so on. At each iteration, the noises ρi are
randomly drawn with a given probability distribution of which the mean and the
standard deviation tend towards 0 and the standard deviation decreases during
this process: in other words, the added noises vanish progressively and, similarly,
the series of noised functions converges towards f . Because of these noises, it may
happen that a transformation which would be rejected in a descent (because it
would involve an increase of f) is accepted and, conversely, that a transformation
which would be accepted in a descent is rejected.

For the problems studied in this paper, the data are given by the weights w of
the edges or of the arcs (directed edges) of the considered graph. Then, noising the
data simply consists in noising these weights by adding the random noises ρi to
them. The noises are drawn with a uniform law into an interval [−r, r], where r,
the noising rate, decreases arithmetically from an initial value rmax, which depends
on the data and which must be tuned, down to 0.

As the previous pattern is more general than this one (in fact, we only consider
variations to decide whether the scanned neighbour of the current solution is ac-
cepted or rejected), we may simulate this way of noising f by the noising of the
variations. But il will be necessary to take care with the probability distribution
of the noises. For instance for the TSP, as the noises added to the data follow a
uniform law, the variation of f involves the sum of four uniform noises (thus the
law followed by this sum is not uniform). The situation is still more complex for
the partitioning problem and for the linear ordering problem, since the number of
terms involved in the computation of the variation is not constant; in these cases,
we add to the variation of f as many uniform noises as there are weights involved
in the computation of ∆f(s, s′) (notice that, if this number of added noises is large,
the sum of the uniform noises tends to follow a Gaussian law).

So, thanks to this possibility to simulate the noising of the data as the noising
of the variations, we deal only with the noising of variations in the following, with
two types of probability distributions: the one that we call “logarithmic” above,
and the one which allows to simulate the noising of the data (and which depends
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Core(r, s) (* r is the noising rate, s is the initial solution *)
for 1 ≤ i ≤ 4NS, do (* NS denotes the size of the neighbourhood *)

let s′ be the next neighbour of s
(* “next” with respect to the implicit order *)
(* used to explore the neighbourhoods *)

compute the noised variation ∆fnoised(s, s
′) (* what involves r *)

if ∆fnoised(s, s
′) < 0 then replace s by s′

apply an unnoised descent from s
return the solution found by the unnoised descent.

Figure 1. Algorithm for the Core procedure. The Core procedure gathers the performed elementary trans-
formations into 4NS “noised” transformations, where NS is the size of the neighbourhood, followed by an
“unnoised” descent.

on the performed elementary transformation).

3.3. The Core procedure

The description of a NM can be based on the Core procedure that we depict now.
Broadly speaking, the Core procedure consists in applying “noised” transforma-
tions, i.e. transformations that are accepted or rejected with respect to the noised
variations involved by them, followed by an “unnoised” descent, i.e. a descent ap-
plied with respect to the genuine variations of f . Because of the stochastic aspect
of NM when the variations are noised, it is not possible to apply noised trans-
formations until a local minimum of f (with respect to the adopted elementary
transformation) has been reached. So, we do the following: we try a given number
NT of noised transformations, then we apply an unnoised descent until a local
minimum is reached, then we try again NT noised transformations, then an un-
noised descent, and so on. From several previous experiments (see references in
[10]), it appears that choosing NT = 4NS leads usually to good results, where NS
denotes the size of the neighbourhood of a solution. In other words, we gather the
elementary transformations in order to try 4NS noised transformations, then an
unnoised descent, then again 4NS noised transformations followed by an unnoised
descent, and so on.

The Core procedure consists in performing 4NS noised transformations followed
by an unnoised descent. Core is the base of the self-tuned version of the noising
methods (STNM). It needs two parameters: the current noising rate r and an
initial solution called s below; this noising rate will decrease after each call to
Core. Figure 1 summarized the principles of Core method.

Core helps to design a classic (versus self-tuned) NM. Such a classic NM needs
the specification of several numerical parameters:

• the number of performed elementary transformations or, equivalently, the num-
ber of times, called nbCore in Figure 2, that Core is applied; this parameter is
obviously linked to the CPU time that the user can spend to solve the considered
instance of his/her problem;

• the initial (and maximum) value rmax of the noising rate;

• the final (and minimum) value rmin of the noising rate;

• the value by which the noising rate r must decrease after each call to Core.

Figure 2 gives the features of a classic NM in which the noising rate decreases
arithmetically.
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Classic noising method
Parameters given by the user: rmax, rmin, nbCore

compute an initial solution s
bestSol← s
for 0 ≤ i ≤ nbCore− 1, do

r ← rmax − i× rmax−rmin

nbCore−1
s← Core(r, s)
if f(s) < f(bestSol) then bestSol← s

return bestSol

Figure 2. The features of a classic noising method (NM). NM is based on the Core procedure, which is
applied iteratively with a noising rate r decreasing arithmetically from a maximum value rmax down to a
minimum value rmin which can be equal to 0.

4. The self-tuning of the parameters of the noising methods

4.1. The main features of STNM

The aim of the self-tuning is to obtain a NM with only one numerical parameter:
the CPU time T that the user wants to spend to solve his/her instance. From
previous experiments (see references in [10]), it appears that the most important
parameter is rmax. If rmax is too high, then we waste much time at the beginning
of NM: then in this case we must spend much more time than necessary or it is
not possible to obtain a good solution. If rmax is too low, the behaviour of NM is
near the one of a descent and we do not take benefit from the specificities of NM.
From the experiments done on the application of the noising methods to the TSP,
it appears that it is not always necessary to tune rmax very sharply: any value
inside [0.9r*, 1.1r*], where r* denotes the best value of rmax according to a fine
tuning, or even inside [0.8r*, 1.2r*], led to very good results in the experiments
reported in [8].

On the other hand, the same experiments show that it is never a bad choice to
choose rmin as equal to 0: other choices allow to save CPU time, but usually not
in a qualitatively great extent. So, to design STNM, we definitely set rmin = 0.

Similarly, we definitely adopt an arithmetical decrease for the noising rate r after
each call to Core. Thus the arithmetical decreasing ratio of r is directly given by
rmax and nbCore (since rmin = 0) and is equal to rmax

nbCore−1 .
Hence, the self-tuning will deal with two parameters: the initial value rmax of the

noising rate r; the number nbCore of calls to Core according to the CPU time fixed
by the user. STNM is made of a series (N1, N2, ..., Nq) of classic NM. To initialize
the series (that is, to define the characteristics of N1), we apply a preparatory stage
(see below). Then, the characteristics of each Ni are defined from the ones of Ni−1

and from the results obtained during the computations of Ni−1. The CPU time
devoted to Ni is twice the CPU time allocated to Ni−1 (except for the last NM of
the series, Nq, of which the CPU time is at least twice the one of Nq−1). So, as
STNM runs, the NM of the series will become longer and longer and the CPU time
devoted to the last NM (i.e. Nq) is at least half the total CPU time allocated by
the user. To compute the initial noising rate of each Ni, we apply two principles:
on the one hand, we compute the average of the noising rates allowing to decrease
the current value of f below a given threshold that we detail below; on the other
hand, a way to adjust the value of the noising rate to what can be considered as a
good initial noising rate.
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Broadly speaking, threshold gives the value of f from which we can consider that
the current Core procedure begins to be truly efficient. At any step of the method,
we know the best value minDesc computed by a descent since the beginning of
STNM. It is usually not difficult to obtain values of f lower than minDesc; so we
consider only the values of threshold lower than minDesc. On the other hand, it
is difficult (this becomes more and more difficult as STNM runs) to obtain values
of f lower than the best value bestV alue computed by STNM since its beginning.
Thus, it is reasonable from the previous two considerations to choose a value of
threshold between minDesc and bestV alue. After different trials (see Section 5.3),
we adopted the arithmetic mean of minDesc and bestV alue for threshold.

During the whole run of STNM, we keep in memory the best solution computed
since the beginning and called bestSol (as in Figure 2), as well as its value that
we call bestV alue (hence equal to f(bestSol)). In the following, we do not recall
this storage, but it exists obviously.

We detail below the preparatory stage first, then the way of computing the
initial noising rate and the number of calls to Core for each NM of the series.

4.2. The preparatory stage

The aim of the preparatory stage is mainly (but not only) to compute a first initial
noising rate (i.e., the initial rate of N1). We proceed in several steps.

• We initialize the initial noising rate rmax with a value which depends on the
values taken by f or, equivalently, on the data. This initial value for rmax must
be positive. In fact, it is not necessary to choose this value sharply, since rmax is
going to be tuned. In our experiments, the initial value of rmax is given by the
average of the absolute values of the weights of the graph that we deal with.

• We apply 10 descents with a random initial solution for each of them. Let
minDesc be the smallest of the 10 values obtained for f at the end of the
10 descents. In the following, each time that a descent is applied from a ran-
dom initial solution, minDesc is updated. So, minDesc gives the best value of
f found by a randomly initialized descent since the beginning of STNM.

• From these 10 descents, we compute the average CPU time t necessary to apply
a descent. We initialize a variable called adjustment with a value between 1.1
and 2: adjustment gets a value equal to 1.1 if t seems small with respect to
the total CPU time T allocated by the user (more precisely, if t < T/100);
adjustment gets a value equal to 2 if t seems large with respect to T (more
precisely, if t > T/100 ); and adjustment varies linearly between 1.1 and 2 for
the intermediate values of t .

• We apply the Core procedure from a solution provided by a descent and, during
the noised phase of Core, we compute the percentage π of accepted elementary
transformations with respect to the total amount of tried elementary transforma-
tions. If π is less than 30 % (see below for a discussion about this percentage), we
multiply the noising rate rmax by the variable adjustment defined above; then
we apply Core once again, we compute the new value of π that we multiply once
again by adjustment if the new value of π is still less than 30 %, and so on, until
π becomes greater than 30 %. If on the contrary the first value of π is greater
than 30 %, we apply the same process, but by dividing by adjustment instead
of multiplying by it, until the current value of π becomes smaller than 30 %. So,
in both cases, at the end of this process, we get a value of rmax for which the
accepting percentage π is about 30 %. This value of rmax provides the initial
noising rate of N1.
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Then the preparatory stage is over and we may perform the NM of the series.

4.3. The self-tuning of the classic noising methods of the series

After this preparatory stage, we perform the classic NM of the series
(N1, N2, ..., Nq).

Each Ni (1 ≤ i ≤ q) is associated with a variable nbCorei which specifies the
number of calls to Core performed by Ni. The first NM N1 is very short: nbCore1 =
10. For 1 < i < q (that is, for all the Ni but the first and last ones), the CPU
time given to Ni is twice greater than the CPU time devoted to Ni−1. To reach
this aim, we simply double the values of the variables nbCorei: for 1 < i < q,
nbCorei = 2× nbCorei−1 = 10× 2i−1.

For the last NM of the series, i.e. Nq, we do so that it lasts at least twice longer
than Nq−1. In fact, during the process, we estimate also the CPU time necessary
to perform Core; thus we can estimate the CPU time Ti necessary to perform Ni

for 2 ≤ i ≤ q. When Ni−1 has been performed, the already consumed CPU time is
equal to

∑i−1
j=i Tj = (2i−1 − 1)T1 and the remaining CPU time is T − (2i−1 − 1)T1,

where T denotes the total CPU time allocated by the user. To perform Ni, we
intend to give a CPU time Ti equal to about 2×Ti−1, and the CPU time allocated
to the remaining NM of the series becomes T − (2i − 1)T1. But if the remaining
CPU time is less than the CPU time that we want to allocate to the next NM of
the series (i.e., if we have: T − (2i − 1)T1 < Ti+1 = 2Ti = 2iT1), then we give the
whole remaining CPU time T − (2i−1)T1 to Ni and Ni becomes the last NM Nq of
the series. With this strategy, the last NM of the series gets at least half the total
CPU time T devoted by the user to solve his/her problem.

To compute the initial noising rates rmax of the classic NM, we try to take
advantage of the “experience” got during the previous NM of the series. Each NM
Ni (2 ≤ i ≤ q) of the series inherits its initial noising rate from Ni−1 and computes
the initial noising rate of Ni+1 (except for Nq, since it is the last NM of the series).
For each Ni (1 ≤ i ≤ q), we perform the following steps.

• An initial solution is randomly generated, and a descent is applied to it (and
thus minDesc is updated if necessary).

• We compute the value of threshold as the arithmetic mean of the best value
minDesc got by a descent and the best value bestV alue obtained from the
beginning of STNM: threshold = (minDesc + bestV alue)/2.

• The Core procedure is applied nbCorei times, with an arithmetic decrease from
the initial noising rate rmax computed by Ni−1 (or by the preparatory stage for
N1) down to 0, as specified in Section 4.1. From the moment when the value
of the current solution becomes less than threshold, we compute the average
of the noising rates which allow to improve the current solution during these
applications of Core; we call goodRate this average value of the noising rates.

• We give the value of goodRate to a variable rate (rate helps to compute the initial
value of the noising rate of Ni+1) and we adjust it. To do so, we apply Core from
bestSol with rate as its initial noising rate. While the solution obtained by the
procedure gives to f a value less than threshold, we adjust rate by multiplying it
by the variable adjustement computed in the preparatory stage and by applying
Core from the current solution and with rate as its initial noising rate. Let ri be
the value of rate obtained at the end of this process.

• The initial noising rate of Ni+1 is given by the average of the rates rj computed
since the beginning, weighted by 2j−1 (the importance of each rj is proportional
to the CPU time devoted to Nj). In other words, the initial noising rate rmax of
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Ni+1 is given by:

rmax =
1

2i − 1

i∑

j=1

2j−1rj .

• The number of calls to Core is updated as explained above (i.e., it doubles from
Ni to Ni+1, except for the last NM of the series).

As the CPU time at least doubles from Ni to Ni+1, the last NM of the series,
which should benefit from the best computed noising rate, lasts at least half the
total CPU time allocated by the user: thus, what should be the best NM is also
the longest. Since the number of NM performed during STNM can be large, and
since each Ni starts with a random solution, STNM usually explores a significant
part of the set of solutions, and it happens that the best solution is found quite
before the last NM of the series. Moreover, the results provided by the successive
NM of the series become good quickly (even if, of course, waiting longer usually
improves these results).

5. Experiments

STNM has been programmed in C and run on a Sparc 4 Sun workstation. The
same program is run for the four problems depicted in Section 2 (except, of course,
the parts depending on the problem, as the elementary transformations). For each
problem, we tested the two ways of noising the values taken by f described in
Section 3.1 and 3.2 and called below STNM-V for the noising of the variations (what
allows to design a self-tuned simulated annealing; see Section 3.1) and STNM-D
for the noising of the data. Thus, we obtain eight series of independent results.

5.1. Experimental results

For each of the four problems, we tried STNM on several thousands of instances
with a number of vertices from several tens to several thousands and with different
features:

• graphs with random weights drawn with a uniform distribution (and with a
uniform law for the orientation of the arcs, in the case of the linear ordering
order);

• graphs with random weights following a distribution which is not uniform: if the
n vertices are numbered from 0 to n−1, then the weight wij of the edge (or the arc
for the linear ordering problem) between i and j is the higher as i and j are near
each other (more formally, for 0 ≤ i ≤ n − 1, wi,i+1 < wi,i+2 < ... < wi,i+⌊n/2⌋

and wi,i−1 < wi,i−2 < ... < wi,i−⌊n/2⌋, where the additions and the subtractions
are done modulo n);

• graphs corresponding to real life instances (especially for the partitioning prob-
lem) or simulating real life instances (for the linear ordering problem, see [12]);

• graphs associated with special instances of the four problems and for which it
is possible to estimate more or less the optimal values of f : for the TSP and
the Euclidean TSP, graphs of which the vertices are located on the crosses of a
regular grid or are spread over a square with a uniform distribution, and graphs
coming from the library TSPLIB [41] (for these graphs, the number of vertices is
specified inside the name of the instance); for the partitioning problem, graphs of



June 25, 2008 11:59 Optimization CharonHudrySelfTuning

13

which the vertices are located on a circle or on a torus and of which the weights
are given by the Eucidean distance between the considered vertices minus a
constant; for the linear ordering problem, tournaments of which the weights are
all equal to 1 (Slater problem) or simulates the aggregation of some special sets
of (deliberately) biased individual preferences defined on the set of vertices (see
[12] for details).

It is not possible to detail all the experimental results that we obtained, and it is
not useful, since the qualitative results are globally the same and since, because of
the stochastic aspects of NM, there is no optimal tuning to which we could compare
the tunings found by the method described above. In order to be more specific in
the discussion below, we detail in Figure 3 the results obtained by STNM on one
instance of each problem: Part100, Slater200, Tsp100, Grid1024; once again, many
other trials of STNM have been done and they all lead to the same qualitative
conclusions. The characteristics of these instances are the following:

• Part100 is an instance of the partitioning problem with 100 vertices; the weights
are randomly chosen between −100 and 100 with a uniform law; the optimal
value is −24296; the CPU time allocated to Part100 is 10 seconds;

• Slater200 is an instance of the linear ordering problem; the number of vertices
of the tournament is 200; the orientation of the arcs is drawn randomly with a
probability equal to 0.5 for each orientation; all the weights are equal to 1 (thus
it is in fact an instance of Slater problem); the optimal value is equal to 8163;
the CPU time allocated to Slater200 is 20 seconds;

• Tsp100 is an instance of the travelling salesman problem with 100 vertices; the
weights are uniformly chosen between 1 and 100; the optimal value is 282; the
CPU time allocated to Tsp100 is 100 seconds;

• Grid1024 is an instance of the Euclidean travelling salesman problem with 1024
vertices located on the crosses of a regular square-grid with a side equal to
0.96875 so that the optimal value is 32; the CPU time allocated to Grid1024 is
100 seconds.

Figure 3 displays the results obtained by 100 applications of STNM-V, of STNM-
D, and of repeated descents (RD) to these instances; the three methods have the
same CPU time (see the values above). The horizontal axis shows the 100 trials,
the vertical axis shows the values of f found by each one of the 100 trials; these
ones are sorted so that the values of f are increasing. We may notice also that
the efficiency of the self-tuning is about the same for the two ways of noising (the
two lines of STNM-D and STNM-V are often superposed, even if STNM-D seems
to be slightly better than STNM-V for the Euclidean TSP). Figures 4, 5 and 6
summarize the best, average and worst results found by RD, STNM-D and STNM-
V for the four instances of Figure 3. Figure 7 provides the best, average and worst
results obtained for STNM-V over 100 trials when applied to several instances from
TSPLIB. Sometimes STNM-D and STNM-V found an optimal solution within the
allocated CPU time. When so, we specify between parentheses how many times
the optimal value has been found in the column “best found value” (notice that
STNM-D and STNM-V find optimal solutions more and more often when the CPU
times increase); for instance, for Part100, STNM-D and STNM-V found an optimal
solution (−24296) 52 times over the 100 trials. These examples show that STNM-
D and STNM-V do not always provide optimal solutions (what was obvious to
foresee), but anyway pretty good ones, even with short CPU times (what was not
so obvious to foresee).
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Figure 3. Experimental results for the repeated descents (RD), for the self-tuned noising method when
the variations of the objective function f are noised (STNM-V), and for the self-tuned noising method
when the data of the instance are noised (STNM-D), for a representative instance of each one of the four
studied problems.

Instance best value best found value average worst CPU time
Part100 −24296 −24237 −23934.96 −23677 10 s
Slater200 8163 8231 8252.41 8266 20 s
Tsp100 282 352 375.79 387 100 s
grid1024 32 33.48 33.64 33.71 100 s

Figure 4. Best, average and worst results for RD over 100 trials, for a representative instance of each one
of the four studied problems.

Instance best value best found value average worst CPU time
Part100 −24296 −24296 (52) −24292.29 −24254 10 s
Slater200 8163 8164 8169.98 8183 20 s
Tsp100 282 291 300.5 311 100 s
grid1024 32 32.05 32.12 32.20 100 s

Figure 5. Best, average and worst results for STNM-D over 100 trials, for a representative instance of
each one of the four studied problems.

Instance best value best found value average worst CPU time
Part100 −24296 −24296 (52) −24290.98 −24254 10 s
Slater200 8163 8163 (1) 8168.33 8178 20 s
Tsp100 282 291 299.67 308 100 s
grid1024 32 32.15 32.25 32.36 100 s

Figure 6. Best, average and worst results for STNM-V over 100 trials, for a representative instance of
each one of the four studied problems.
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Graph best value best found value average worst CPU time
ei151 426 426 (83) 426.17 427 2 s
kroC100 20749 20749 (94) 20749.56 20769 2 s
lin105 14379 14379 (75) 14389.52 14449 2 s
ch150 6528 6528 (42) 6539.68 6555 20 s
bier127 118282 118282 (80) 118298.84 118799 60 s
kroA200 29368 29368 (56) 29378.82 29445 60 s
kroB200 29437 29437 (44) 29439.82 29472 300 s
pr144 58537 58537 (18) 58761.3 59865 300 s
kroB150 26130 26130 (2) 26132.08 26136 900 s
rd400 15281 15281 (2) 15298.69 15340 900 s
tsp225 3916 3916 (13) 3939.09 3959 900 s
pcb442 50778 50785 (1) 50800.41 50827 1800 s
vm1084 239297 240162 241284.71 242563 3600 s

Figure 7. Best, average and worst results for STNM-V over 100 trials, for several instances of the TSP
from TSPLIB.

Because of the NP-hardness of the studied problems, it is difficult to know an
optimal solution and, thus, to measure how far the solution found by STNM
is with respect to an optimal one (moreover, this concerns more the efficiency
of NM, which is not discussed in this paper – see the references given in [10]
for such discussions –, than the efficiency of a self-tuning of these methods,
which is what we study here). When an optimal solution is known, we see
that the solution found by STNM is quite often near it or equal to it. More-
over, for the linear ordering problem, we applied STNM-D and an exact branch-
and-bound algorithm (the one described in [12] and freely available at the ad-
dress http://www.infres.enst.fr/∼charon/tournament/median.html; this software
includes a part devoted to STNM for the linear ordering problem) to 5790 instances
with different characteristics and with a number of vertices up to 100 (what is al-
ready large for an exact method; to be more specific, dealing with an instance
similar to Slater200 but with only 31 vertices needed an average CPU time of 2635
seconds; the exponential increase of CPU time was such that we could not try
larger tournaments with the same features as Slater200 when we dealt with Slater
problem in [12]): in these experiments, STNM found exact solutions for 5784 in-
stances; for the 6 remaining instances, the solutions found by STNM were almost
optimal (and a second run of STNM succeeded in finding an optimal solution).

5.2. Global conclusions from the experiments

We can draw the following qualitative conclusions from the experiments (once again
arising from several thousands of instances for each problem, but not detailed here):
the initial noising rate rmax of the last classic NM Nq of the series can be considered
as the one found manually by an expert after successive trials and usually leads to
very good solutions (optimal or almost).

It is noticeable that, for a given instance of a given problem, the tuning of rmax

is steady and does not present accident (i.e., a tuning which would lead to an
inefficient NM), as shown by Figure 3; the probability to fail seems very low.

About the efficiency of STNM, as the automatic tuning of rmax by STNM leads
to values that we could obtain by a manual tuning done by an expert, we usually
obtain solutions quite similar to the ones provided by a classic NM which would
be well tuned, and thus much better than the ones of repeated descents (what was
not at all obvious at the beginning).
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Figure 8. Study on the choice of 30 % to limit the percentage π of accepted elementary transformations.
The horizontal axis corresponds to the tried values instead of 30 %; the vertical axis shows the average of
the values taken by the objective function f over 100 trials, for a representative instance of each one of
the four studied problems.

About the CPU time consumed by STNM with respect to the one consumed by
a classic NM, let’s say N , with a good initial noising rate (specifically, with the
noising rate provided by STNM at its end), the design of STNM (doubling the
CPU time of each classic NM of the series) is such that we are sure to reach a
solution of same quality by STNM as by N within at most twice the CPU time
allocated to N , since the last NM of the series applied by STNM gets at least
half the total CPU time allocated to STNM. The experiments show in fact that,
quite often, STNM finds a comparable solution within the same CPU time. But in
the case of a classic NM N , it is then necessary to tune the parameters (at least
rmax), which always takes much CPU time because, as NM is not deterministic,
it is necessary to make statistics and thus to run N several times before finding a
good tuning.

5.3. Discussion on the choice of 30 % for the percentage of accepted

transformations

In designing STNM, we limit several times the percentage π of accepted elementary
transformations to 30 %. We tried other values instead of 30 % to know how robust
the choice of 30 % is. Figure 8 shows the effect of other values for the previous four
instances Part100, Slater200, Tsp100 and Grid1024. But, once again, we tried many
other instances for the four problems, with different characteristics: the results are
quite similar to the ones displayed by Figure 8. The horizontal axis of Figure 8
corresponds to the tried values instead of 30 %: from 0.05 to 0.45, with a step of
0.05; the vertical axis shows the average of the values taken by f over 100 trials.

From the experimental results, it appears that other choices than 30 % are possi-
ble, but not basically better. It would be risky to adopt a too large value, typically
larger than 40 %: such a percentage would lead to too large initial noising rates
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Figure 9. Evolution of the average of the values taken by the objective function f over 100 trials when
the parameter α (providing the value of the parameter threshold: threshold = α × minDesc + (1 − α) ×
bestV alue, where minDesc and bestV alue denote respectively the best value found by a descent and the
best value found by STNM since the beginning) varies from 0.1 to 0.9 with a step equal to 0.1, for a
representative instance of each one of the four studied problems.

and, then, too many unfavourable transformations would be accepted, what wastes
CPU time. Similarly, a too low percentage, let’s say, below 10 %, can be a worse
choice than 30 % by restricting the values of the initial noising rate too much. But,
comparing the values of Figure 8 to the ones of Figure 3 shows that, even for “bad”
percentages, the results obtained are quite good (and in all cases much better than
the ones provided by repeated descents). Thus the choice of a sharp percentage
does not seem to be crucial and a value around 30 % seems reasonable.

5.4. Expression of threshold in function of minDesc and bestV alue

As described in Section 4, threshold is a variable involved in the computation of the
initial noising rate rmax of the classic NM of the series performed by STNM. After
different attempts in order to try several formulae, we adopted a linear expression
for threshold in function of minDesc and bestV alue:

threshold = α×minDesc + (1− α)× bestV alue

with 0 ≤ α ≤ 1 (hence, the arithmetic mean adopted above corresponds with
α = 0.5). The lower α, the lower threshold and thus the lower rmax (more precisely,
the lower the increase of rmax). Figure 9 shows the evolution of the average of the
values taken by f over 100 trials when STNM is applied to the four previous
instances with α varying from 0.1 to 0.9 with a step equal to 0.1.

For the first two problems, the choice of the arithmetic mean seems quite appro-
priate. For the other two, it remains a good choice, as well as other possibilities,
except for STNM-V when applied to the TSP: here it seems that a value lower



June 25, 2008 11:59 Optimization CharonHudrySelfTuning

18

than 0.5 for α would be better. Notice anyway that, for certain instances of TSP,
low values of α, and thus low values of threshold, lead STNM-V to bad results,
comparable with the ones of repeated descents. On the contrary, choosing a value
greater than 0.5 for α usually does not lead to bad results in average, but may
consume CPU time useless: in this case, at the beginning of the method, rmax is
too large and the noised functions are too far from f to be interesting; it is then
necessary to wait that the noising rate reaches lower values during the noising pro-
cess to compute interesting solutions. It is why we decided to adopt the arithmetic
mean to compute threshold.

6. Conclusion

It is not an easy task to design a metaheuristic with only one parameter, the CPU
time that the user wants to spend in order to solve his or her problem, and this
field is still in its infancy. The difficulty arises from different sources. A first source
relies in the difficulty to imagine ways to automate the tuning, especially if we
want to obtain a method that we could apply to several problems; and even for
a given problem, it is surely not possible to design a method utterly automatic
and simultaneously optimal for all the instances. A second difficulty arises from
the validation of the automatic tunings: experiments are always open to criticism,
especially with stochastic methods since there is no optimal tuning in this case;
comparing the results (especially the CPU time) with manually tuned methods is
not fair, since it is impossible to estimate the CPU time necessary to manually
tune the parameters (which depends more on the ability of the user than on the
method itself); while theoretical studies usually fails to give practical information
on how to choose the precise values of numerical parameters (and even sometimes
on how to design more structural components of metaheuristics). By this study, we
try to show that the noising methods can be automatically tuned, and even that
they can tune themselves during their runs.

The game is worth the candle. Indeed, metaheuristics are powerful tools to tackle
difficult problems; but a main problem arises from the necessity to tune their
parameters, while it is usually difficult to get an idea of their appropriate values
(sometimes, even broadly). In some cases, it is possible to substitute a parameter to
another which can be easier to tune (as it has been suggested to compute the initial
temperature of simulated annealing; see [1] for references); but it is nonetheless
necessary to tune this new parameter. The tuning of the parameters can be long,
tedious and should be done for each instance of the problem (or, at least for each
family of instances sharing common features). It often consumes much CPU time
that we could devote to solve the instance better. We think that a next step in the
development of metaheuristics will precisely be the design of automatically tuned
schemes or, still better, of self-tuned schemes. These automatic tunings can be used
directly to run the considered methods, as we did in STNM; but it is also possible
to use them as a help to an expert: in this case, automatically tuned methods can
be run to compute broad values of the parameters that an expert can start with
and sharpen, without wasting time in order to find these starting values.

By this paper, we try to contribute to this aim of developing the field of self-
tuned metaheuristics. It is surely possible to improve several aspects. This could
be done by polishing different aspects that we introduced in STNM. This could be
done also by introducing new aspects in our STNM. For instance, the final noising
rate has been set to 0 because it is more convenient. But, in many cases, it is
useless to make the noising rate decrease until 0: we only waste time. Thus we
could improve STNM by tuning also this parameter. Another possibility would be
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to deal with some variants of NM. For instance, we recalled at the beginning that
the noising methods provide a generalization of simulated annealing (SA). Thus,
it is possible to design STNM in order to give a self-tuned version of SA. Even if
the design of STNM-V is a first attempt in this direction, we did not try to draw
benefit from the specificities of SA in this paper. Many possibilities are still open
to investigations; some of them will be the object of our further research. We hope
that the reader will find, by this preliminary study, that it is worth doing and that
the automatic tuning of metaheuristics (of course, not only the noising methods)
is a field which deserves consideration. Indeed, it is very convenient to be able to
apply a metaheuristic without tuning any parameter!
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